120 research outputs found

    Cheminformatics Approaches to Structure Based Virtual Screening: Methodology Development and Applications

    Get PDF
    Structure-based virtual screening (VS) using 3D structures of protein targets has become a popular in silico drug discovery approach. The success of VS relies on the quality of underlying scoring functions. Despite of the success of structure-based VS in several reported cases, target-dependent VS performance and poor binding affinity predictions are well-known drawbacks in structure-based scoring functions. The goal of my dissertation is to use cheminformatics approaches to address above problems of the existing structure-based scoring methods. In Aim 1, cheminformatics practices are applied to those problems which conventional structure-based scoring functions find difficult (anti-bacterial leads efflux study) or fail to address (AmpC β-lactamase study). Predictive binary classification QSAR models can be constructed to classify complex efflux properties (low vs. high) and to differentiate AmpC β-lactamase binders from binding decoys (i.e., the false positives generated by scoring functions). The above models are applied to virtual screening and many computational hits are experimentally confirmed. In Aim 2, novel statistical binding and pose scoring functions (or pose filter in Aim 3) are developed, to accurately predict protein-ligand binding affinity and to discriminate native-like poses of ligands from pose decoys respectively. In my approach, the proteinligand interface is represented at the atomic level resolution and transformed via a special computational geometry approach called Delaunay tessellation to a collection of atom quadruplet motifs. And individual atom members of the motifs are characterized by conceptual Density Functional Theory (DFT)-based atomic properties. The binding scoring function shows acceptable prediction accuracy towards Community Structure-Activity Resources (CSAR) data sets with diverse protein families. In Aim 3, a two-step scoring protocol for target-specific virtual screening is developed and validated using the challenging Directory of Useful Decoys (DUD) data sets. In the first step our target-specific pose (-scoring) filter developed in Aim 2 is used to filter out/penalize putative pose decoys for every compound. Then in the second step the remaining putative native-like poses are scored with MedusaScore, which is a conventional force-field-based scoring function. This novel screening protocol can consistently improve MedusaScore VS performance, suggesting it possible applications to practical pharmaceutically relevant targets

    Social Capital and Technological Literacy in Taiwan

    Get PDF
    The burgeoning interest in social capital within the technology community represents a welcome move towards a concern for the social elements of technological adaptation and capacity. Since technology plays an ever larger role in our daily life, it is necessary to articulate social capital and its relationship to technological literacy. A nationwide data was collected by area sampling, and position generator was used to measure social capital. Regression model was constructed for technological literacy. Age, gender, education, income, web access, and social capital were included as independent variables. The results show that age, gender, education, web access, and social capital were good predictors of technological literacy. It is concluded that social capital is helpful in coping with rapid technological change. Theoretical and empirical implications and future research are discussed

    Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening?

    Get PDF
    Recent highly expected structural characterizations of agonist-bound and antagonist-bound beta-2 adrenoreceptor (β2AR) by X-ray crystallography have been widely regarded as critical advances to enable more effective structure-based discovery of GPCRs ligands. It appears that this very important development may have undermined many previous efforts to develop 3D theoretical models of GPCRs. To address this question directly we have compared several historical β2AR models versus the inactive state and nanobody-stabilized active state of β2AR crystal structures in terms of their structural similarity and effectiveness of use in virtual screening for β2AR specific agonists and antagonists. Theoretical models, incluing both homology and de novo types, were collected from five different groups who have published extensively in the field of GPCRs modeling; all models were built before X-ray structures became available. In general, β2AR theoretical models differ significantly from the crystal structure in terms of TMH definition and the global packing. Nevertheless, surprisingly, several models afforded hit rates resulting from virtual screening of large chemical library enriched by known β2AR ligands that exceeded those using X-ray structures; the hit rates were particularly higher for agonists. Furthemore, the screening performance of models is associated with local structural quality such as the RMSDs for binding pocket residues and the ability to capture accurately most if not all critical protein/ligand interactions. These results suggest that carefully built models of GPCRs could capture critical chemical and structural features of the binding pocket thus may be even more useful for practical structure-based drug discovery than X-ray structures

    Combined Application of Cheminformatics- and Physical Force Field-Based Scoring Functions Improves Binding Affinity Prediction for CSAR Data Sets

    Get PDF
    The curated CSAR-NRC benchmark sets provide valuable opportunity for testing or comparing the performance of both existing and novel scoring functions. We apply two different scoring functions, both independently and in combination, to predict binding affinity of ligands in the CSAR-NRC datasets. One, reported here for the first time, employs multiple chemical-geometrical descriptors of the protein-ligand interface to develop Quantitative Structure – Binding Affinity Relationships (QSBAR) models; these models are then used to predict binding affinity of ligands in the external dataset. Second is a physical force field-based scoring function, MedusaScore. We show that both individual scoring functions achieve statistically significant prediction accuracies with the squared correlation coefficient (R2) between actual and predicted binding affinity of 0.44/0.53 (Set1/Set2) with QSBAR models and 0.34/0.47 (Set1/Set2) with MedusaScore. Importantly, we find that the combination of QSBAR models and MedusaScore into consensus scoring function affords higher prediction accuracy than any of the contributing methods achieving R2 of 0.45/0.58 (Set1/Set2). Furthermore, we identify several chemical features and non-covalent interactions that may be responsible for the inaccurate prediction of binding affinity for several ligands by the scoring functions employed in this study

    Cheminformatics Meets Molecular Mechanics: A Combined Application of Knowledge-Based Pose Scoring and Physical Force Field-Based Hit Scoring Functions Improves the Accuracy of Structure-Based Virtual Screening

    Get PDF
    Poor performance of scoring functions is a well-known bottleneck in structure-based virtual screening, which is most frequently manifested in the scoring functions’ inability to discriminate between true ligands versus known non-binders (therefore designated as binding decoys). This deficiency leads to a large number of false positive hits resulting from virtual screening. We have hypothesized that filtering out or penalizing docking poses recognized as non-native (i.e., pose decoys) should improve the performance of virtual screening in terms of improved identification of true binders. Using several concepts from the field of cheminformatics, we have developed a novel approach to identifying pose decoys from an ensemble of poses generated by computational docking procedures. We demonstrate that the use of target-specific pose (-scoring) filter in combination with a physical force field-based scoring function (MedusaScore) leads to significant improvement of hit rates in virtual screening studies for 12 of the 13 benchmark sets from the clustered version of the Database of Useful Decoys (DUD). This new hybrid scoring function outperforms several conventional structure-based scoring functions, including XSCORE∷HMSCORE, ChemScore, PLP, and Chemgauss3, in six out of 13 data sets at early stage of VS (up 1% decoys of the screening database). We compare our hybrid method with several novel VS methods that were recently reported to have good performances on the same DUD data sets. We find that the retrieved ligands using our method are chemically more diverse in comparison with two ligand-based methods (FieldScreen and FLAP∷LBX). We also compare our method with FLAP∷RBLB, a high-performance VS method that also utilizes both the receptor and the cognate ligand structures. Interestingly, we find that the top ligands retrieved using our method are highly complementary to those retrieved using FLAP∷RBLB, hinting effective directions for best VS applications. We suggest that this integrative virtual screening approach combining cheminformatics and molecular mechanics methodologies may be applied to a broad variety of protein targets to improve the outcome of structure-based drug discovery studies

    Tox21Enricher-Shiny: an R Shiny application for toxicity functional annotation analysis

    Get PDF
    Inference of toxicological and mechanistic properties of untested chemicals through structural or biological similarity is a commonly employed approach for initial chemical characterization and hypothesis generation. We previously developed a web-based application, Tox21Enricher-Grails, on the Grails framework that identifies enriched biological/toxicological properties of chemical sets for the purpose of inferring properties of untested chemicals within the set. It was able to detect significantly overrepresented biological (e.g., receptor binding), toxicological (e.g., carcinogenicity), and chemical (e.g., toxicologically relevant chemical substructures) annotations within sets of chemicals screened in the Tox21 platform. Here, we present an R Shiny application version of Tox21Enricher-Grails, Tox21Enricher-Shiny, with more robust features and updated annotations. Tox21Enricher-Shiny allows users to interact with the web application component (available at http://hurlab.med.und.edu/Tox21Enricher/) through a user-friendly graphical user interface or to directly access the application’s functions through an application programming interface. This version now supports InChI strings as input in addition to CASRN and SMILES identifiers. Input chemicals that contain certain reactive functional groups (nitrile, aldehyde, epoxide, and isocyanate groups) may react with proteins in cell-based Tox21 assays: this could cause Tox21Enricher-Shiny to produce spurious enrichment analysis results. Therefore, this version of the application can now automatically detect and ignore such problematic chemicals in a user’s input. The application also offers new data visualizations, and the architecture has been greatly simplified to allow for simple deployment, version control, and porting. The application may be deployed onto a Posit Connect or Shiny server, and it uses Postgres for database management. As other Tox21-related tools are being migrated to the R Shiny platform, the development of Tox21Enricher-Shiny is a logical transition to use R’s strong data analysis and visualization capacities and to provide aesthetic and developmental consistency with other Tox21 applications developed by the Division of Translational Toxicology (DTT) at the National Institute of Environmental Health Sciences (NIEHS)

    Twisting of the DNA-binding surface by a β-strand-bearing proline modulates DNA gyrase activity

    Get PDF
    DNA gyrase is the only topoisomerase capable of introducing (−) supercoils into relaxed DNA. The C-terminal domain of the gyrase A subunit (GyrA-CTD) and the presence of a gyrase-specific ‘GyrA-box’ motif within this domain are essential for this unique (−) supercoiling activity by allowing gyrase to wrap DNA around itself. Here we report the crystal structure of Xanthomonas campestris GyrA-CTD and provide the first view of a canonical GyrA-box motif. This structure resembles the GyrA-box-disordered Escherichia coli GyrA-CTD, both adopting a non-planar β-pinwheel fold composed of six seemingly spirally arranged β-sheet blades. Interestingly, structural analysis revealed that the non-planar architecture mainly stems from the tilted packing seen between blades 1 and 2, with the packing geometry likely being defined by a conserved and unusual β-strand-bearing proline. Consequently, the GyrA-box-containing blade 1 is placed at an angled spatial position relative to the other DNA-binding blades, and an abrupt bend is introduced into the otherwise flat DNA-binding surface. Mutagenesis studies support that the proline-induced structural twist contributes directly to gyrase’s (−) supercoiling activity. To our knowledge, this is the first demonstration that a β-strand-bearing proline may impact protein function. Potential relevance of β-strand-bearing proline to disease phenylketonuria is also noted

    A Novel Selective JAK2 Inhibitor Identified Using Pharmacological Interactions

    Get PDF
    The JAK2/STAT signaling pathway mediates cytokine receptor signals that are involved in cell growth, survival and homeostasis. JAK2 is a member of the Janus kinase (JAK) family and aberrant JAK2/STAT is involved with various diseases, making the pathway a therapeutic target. The similarity between the ATP binding site of protein kinases has made development of specific inhibitors difficult. Current JAK2 inhibitors are not selective and produce unwanted side effects. It is thought that increasing selectivity of kinase inhibitors may reduce the side effects seen with current treatment options. Thus, there is a great need for a selective JAK inhibitor. In this study, we identified a JAK2 specific inhibitor. We first identified key pharmacological interactions in the JAK2 binding site by analyzing known JAK2 inhibitors. Then, we performed structure-based virtual screening and filtered compounds based on their pharmacological interactions and identified compound NSC13626 as a potential JAK2 inhibitor. Results of enzymatic assays revealed that against a panel of kinases, compound NSC13626 is a JAK2 inhibitor and has high selectivity toward the JAK2 and JAK3 isozymes. Our cellular assays revealed that compound NSC13626 inhibits colorectal cancer cell (CRC) growth by downregulating phosphorylation of STAT3 and arresting the cell cycle in the S phase. Thus, we believe that compound NSC13626 has potential to be further optimized as a selective JAK2 drug

    Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: Meeting new challenges

    Get PDF
    © 2014 Elsevier Ltd All rights reserved. Despite tremendous successes of GPCR crystallography, the receptors with available structures represent only a small fraction of human GPCRs. An important role of the modeling community is to maximize structural insights for the remaining receptors and complexes. The community-wide GPCR Dock assessment was established to stimulate and monitor the progress in molecular modeling and ligand docking for GPCRs. The four targets in the present third assessment round presented new and diverse challenges for modelers, including prediction of allosteric ligand interaction and activation states in 5-hydroxytryptamine receptors 1B and 2B, and modeling by extremely distant homology for smoothened receptor. Forty-four modeling groups participated in the assessment. State-of-the-art modeling approaches achieved close-to-experimental accuracy for small rigid orthosteric ligands and models built by close homology, and they correctly predicted protein fold for distant homology targets. Predictions of long loops and GPCR activation states remain unsolved problems
    corecore